Post Project Monitoring Report

Asia Submarine-cable Express (ASE) – Tseung Kwan O

Post Project Water Quality Monitoring Report (Zone A)

26 March 2014

Environmental Resources Management 16/F DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Asia Submarine-cable Express (ASE) – Tseung Kwan O

Post Project Water Quality Monitoring Report (Zone A)

Environmental Resources Management

16/F DCH Commercial Centre 25 Westlands Road Quarry Bay Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Document Code: 0223932 WQM Post Project Flyer Sheet.doc

Client:		GMS No:				
NTT Com Asia Ltd			223932			
Summary	Summary:					
		26 Marc	h 2014			
		Approved	by:			
This report presents the monitoring requirements, methodologies and results of the post project ambient marine water quality measurements at the monitoring locations near Tseung Kwan O in accordance with the EM&A Manual.			levoe			
		Toronco	Fond			
		Project I	Director			
v0	Post Project Water Quality Monitoring Report (Zone A)	JK	FZINO	TFONG	26 Mar 14	
Revision	Description	Ву	Checked	Approved	Date	
This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk. This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business			Distribution			
and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the		🛛 Pub	lic		ISO 5001 : 2000 Certificate No. 15 32513	
This report to third parti relies on the	is confidential to the client and we accept no responsibility of whatsoever nature ies to whom this report, or any part thereof, is made known. Any such party e report at their own risk.	🗌 Con	fidential		REAL REAL REAL REAL REAL REAL REAL REAL	

Asia Submarine-cable Express (ASE) – Tseung Kwan O **Environmental Certification Sheet** EP-433/2011

Reference Document/Plan

Document/ Plan- to be -Certified / Verified:	Post Project Water Quality Monitoring Report (Zone A)
Date of Report:	Wednesday, 26 March 2014
Date prepared by ET:	ERM-Hong Kong Ltd
Date received by IEC:	Ecosystem Ltd

Reference EM&A Manual/ EP Requirement

EM&A Manual Requirement: Section 2

Content: Water Quality Monitoring

2.5 "A Post Project Monitoring Report to review the environmental status after Project marine installation and compare with the results as presented in the relevant Baseline Monitoring Report shall be provided within one month after completion of the Project marine installation works."

"The Post Project Monitoring Report shall include the following details: brief project background information; drawings showing locations of the monitoring stations; full Project marine installation works programme with milestones of environmental protection/mitigation activities annotated; monitoring results together with the information including monitoring methodology, parameters monitored, monitoring locations (and depth), monitoring date, time, frequency and duration; review the environmental status after Project marine installation works and compare with results presented in the relevant Baseline Monitoring Report; and comments and conclusions."

EP Condition:

Condition No. 2.4

Content:

Post Project Monitoring Report on Water Quality

To monitor the environmental impacts and timely implementation of the recommended mitigation measures, the (ii)(c) Permit Holder shall submit to the Director four hard copies and one electronic copy of the post project monitoring report on water quality within one month after completion of the marine works.

ET Certification

Terence Fong, Environmental Date: Date:	Wednesday, 26 March 2014

IEC Verification

I hereby verify that the above referenced	document/ plan complies w	ith the above re	eferenced condition of
EP-433/2011.			
CG	/		
Vincent Lai, Independent		Date:	Wednesday, 26

Vincent Lai, Independent Environmental Checker:

Wednesday, 26 Date: March 2014

CONTENTS

	EXECUTIVE SUMMARY	Ι
1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	2
2.1	BACKGROUND	2
2.2	SITE DESCRIPTION	3
2.3	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	3
3	WATER QUALITY MONITORING REQUIREMENTS	5
3.1	MONITORING LOCATIONS	5
3.2	MONITORING PARAMETERS	6
3.3	MONITORING EQUIPMENT AND METHODOLOGY	6
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION	
	MEASURES	9
5	POST PROJECT MONITORING RESULTS	10
6	CONCLUSION	11

Table 2.1	Summary of Environmental Licensing, Notification, Permit and
	Reporting Status
Table 3.1	Water Quality Impact Stations
Table 3.2	Equipment Used during the Post Project Water Quality
	Monitoring

LIST OF ANNEXES

Annex A	Post Project	Water Q	Quality	Monitoring	Schedule
---------	--------------	---------	---------	------------	----------

- Annex B Calibration Reports of Multi-parameter Sensor
- Annex C QA/QC Results for Suspended Solids Testing
- Annex D Post Project Water Quality Monitoring Results

EXECUTIVE SUMMARY

The submarine cable installation works for the Asia Submarine-cable Express (ASE) cable system commenced in January 2014 and were completed in February 2014. This is the **Post Project Water Quality Monitoring Report (Zone A)** presenting results and findings of the post project water quality monitoring conducted during the period from 10 to 15 March 2014 in accordance with the *Updated Environmental Monitoring and Audit Manual* (*Updated EM&A Manual*).

Water Quality

Three monitoring events (days) were scheduled between 10 and 15 March 2014, at monitoring stations located in Zone A, to replicate monitoring activities conducted for baseline data gathering in accordance with the *Updated EM&A Manual*. Monitoring events at all designated monitoring stations in Zone A were performed on schedule.

In general, the Dissolved Oxygen (DO) levels recorded during the post project monitoring period were recorded mostly higher than results obtained during the baseline update monitoring period. Turbidity and Suspended Solid (SS) levels observed in the post project monitoring period were observed lower than the results recorded during the baseline update monitoring period at all designated stations. After detailed analyses, it is considered that the overall changes in DO, Turbidity and SS were driven by natural fluctuations.

Conclusion

Upon completion of the cable installation, the overall water quality at the impact stations in Zone A was found similar to that at the control station and was recorded higher in DO and lower in Turbidity and SS when compared with the baseline data. Given the fact that the control station is sufficiently far away from the cable alignment and water quality at this station could not be affected by the Project, it is concluded that the overall changes in DO, Turbidity and SS levels during the post-project monitoring period at all designated stations including the control station are likely to represent a natural phenomenon. It is considered that no deterioration of water quality was observed and the impacts from the Project works on water quality are negligible.

INTRODUCTION

1

ERM-Hong Kong, Limited (ERM) was appointed by NTT Com Asia (NTTCA) as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for the re-installation of a damaged section of the Asia-Submarine-cable Express (ASE) telecommunication cable (thereinafter called the "Project"). The ASE cable is approximately 7,200 km in length, connecting Japan and Singapore with branches to the Philippines, Hong Kong SAR (HKSAR) and Malaysia.

1.1 PURPOSE OF THE REPORT

This is the **Post Project Water Quality Monitoring Report (Zone A)**, which summarises the results of post project water quality monitoring as part of the EM&A programme during the reporting period from 10 to 15 March 2014. The post project monitoring results have been compared to the baseline water quality update monitoring results in order to investigate any impact of the Project marine works on water quality in the vicinity of the Project site.

1.2 STRUCTURE OF THE REPORT

The structure of the Report is as follows:

Section 1 : Introduction

Provides details of the background, purpose and report structure.

- Section 2: **Project Information** Summarises background and scope of the project, the repair works undertaken and the status of Environmental Permits/Licenses during the reporting period.
- Section 3 : Water Quality Monitoring Requirements Summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, and monitoring locations.
- Section 4 : Implementation Status of Environmental Mitigation Measures Summarises the implementation of environmental protection measures during the reporting period.
- Section 5 : **Post Project Monitoring Results** Summarises the monitoring results obtained in the reporting period for Zone A.
- *Section 6 : Conclusions* Presents the key findings of the post project monitoring results.

2.1 BACKGROUND

In 2012/2013, NTT Com Asia (NTTCA) installed a telecommunication cable (Asia Submarine-cable Express (ASE) cable) of approximately 7,200 km in length, connecting Japan and Singapore with branches to the Philippines, Hong Kong SAR (HKSAR) and Malaysia, with marine works in HK waters initially completed in January 2013. NTTCA was also responsible for securing the approval to land the ASE cable in Tseung Kwan O, Hong Kong SAR (HKSAR), the landing site for a number of submarine cables, and the landing site is at a Beach Manhole (BMH) after which the cable ultimately connects with a Data Centre in Tseung Kwan O (TKO) Industrial Estate. From Tseung Kwan O, the cable extends westward approaching the Tathong Channel. Near to Cape Collinson, the cable is approximately parallel to the Tathong Channel until north of Waglan Island where it travels eastward to the boundary of HKSAR waters and enters the South China Sea. The total length of cable in Hong Kong SAR waters is approximately 33.5 km. A map of the cable route is presented in *Figure 2.1*.

A Project Profile (PP-452/2011) which includes an assessment of the potential environmental impacts associated with the installation of the submarine telecommunications cable system was prepared and submitted to the Environmental Protection Department (EPD) under section 5.(1) (b) and 5.(11) of the *Environmental Impact Assessment Ordinance (EIAO)* for the application for Permission to apply directly for Environmental Permit (EP). EPD subsequently issued an Environmental Permit (*EP*-433/2011).

Pursuant to *Condition 2.4* of *EP- 433/2011*, an environmental monitoring and audit (EM&A) programme, as set out in the *Environmental Monitoring and Audit Manual (EM&A Manual*⁽¹⁾) is required for this Project. Baseline data were collected prior to the start of cable installation works in 2012 and EM&A was conducted throughout the cable installation and after its completion in early 2013. as required in the *EM&A Manual*.

Upon inspection in October 2013 the ASE cable was found to be damaged and a section within Zone A (see *Figure 2.2*) required re-installation. The EM&A programme are therefore required to resume for the cable installation works in Hong Kong Waters and the *EM&A Manual* was updated to reflect these new repair works and produce the *Updated EM&A Manual*.

New baseline water quality 'update' monitoring was conducted prior to the start of re-installation works, in early November 2013, and results are summarised in the '*Baseline Water Quality Monitoring Update Report (Zone A)*' of December 2013.

(1) ERM (2012) EM&A Manual for Asia Submarine-cable Express (ASE) – Tseung Kwan O.

Impact monitoring started on 12 January 2014, when the cable re-installation works commenced in Zone A. The initial cable installation works were completed on 5 February 2014 and the impact water quality monitoring ceased subsequently. The impact water quality monitoring results were summarized in the following reports:

- 2014 First Weekly Impact Water Quality Monitoring Report (Zone A);
- 2014 Second Weekly Impact Water Quality Monitoring Report (Zone A);
- 2014 Third Weekly Impact Water Quality Monitoring Report (Zone A); and
- 2014 Forth Weekly Impact Water Quality Monitoring Report (Zone A).

All marine works for the cable repair works were completed in early February 2014 and final confirmation of completion of the work after testing of the cable was given on Tuesday 4 March 2014. In accordance with the *Updated EM&A Manual*, post project water quality monitoring should comprise sampling on three occasions (days) within three weeks of completion of the marine installation works.

This **Post Project Water Quality Monitoring Report (Zone A)** presents the results and findings from the 2014 post project monitoring, conducted in the monitoring period 10-15 March 2014. It should be noted that cable repair works were only carried out in Zone A (Cape Collinson) and results of the post project monitoring data have therefore been compared against the results of the baseline water quality update monitoring in Zone A.

2.2 SITE DESCRIPTION

The cable installation works for the damaged section of the ASE cable were conducted near TKO in Zone A (*Figure 2.2*).

2.3 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the relevant permits, licences and reports on marine water quality for this Project is presented in *Table 2.1*.

Table 2.1Summary of Environmental Licensing, Notification, Permit and Reporting
Status

Permit / Licence /	Reference	Validity Period	Remarks
Notification / Report			
Environmental Permit	EP 433/2011	Throughout the	Granted on 20
		construction and	December 2011
		operation stages	
EM&A Manual	-	Throughout the	Submitted on 18
		construction and	September 2012.
		operation stages	Superseded by
			Updated EM&A
			Manual

Permit / Licence /	Reference	Validity Period	Remarks
Notification / Report			
Updated EM&A Manual	-	Throughout the	Submitted in
-		construction and	December 2013
		operation stages	
Baseline Water Quality	-	n/a	Submitted on 5
Monitoring Update Report			December 2013
(Zone A)			
2014 First Weekly Impact		n/a	Submitted on 23
Water Quality Monitoring			January 2014
Report (Zone A)			
2014 Second Weekly Impact		n/a	Submitted on 30
Water Quality Monitoring			January 2014
Report (Zone A)			
2014 Third Weekly Impact		n/a	Submitted on 6
Water Quality Monitoring			February 2014
Report (Zone A)			-
2014 Forth Weekly Impact		n/a	Submitted on 12
Water Quality Monitoring			February 2014
Report (Zone A)			

3 WATER QUALITY MONITORING REQUIREMENTS

3.1 MONITORING LOCATIONS

In accordance with the *Updated EM&A Manual,* water quality monitoring samples were collected at eleven (11) stations, the same stations as baseline monitoring situated around the cable installation works in Zone A. The locations of the sampling stations within Zone A are shown in *Figure 2.2.*

- E7 is the Impact Station located at Fat Tong Chau to monitor the impacts of cable installation works on the coral communities in the proximity;
- E8 is an Impact Station to monitor the impacts of cable installation works on the coral communities along Junk Bay South West;
- E9 is an Impact Station to monitor the impacts of cable installation works on the coral communities at Cape Collison (the Gradient Station is not set due to the short distance of this Impact Station to nearby proposed cable works which may affect the Project marine installation works);
- F1 is an Impact Station to monitor the impacts of cable installation works on the Tung Lung Chau Fish Culture Zone;
- S1 is an Impact Station situated at the WSD Seawater Intake Point in Junk Bay. It is located within 500 m north of the cable alignment at Junk Bay and set up to monitor the effect of Project marine installation works in the area;
- S2 is an Impact Station to monitor the impacts of cable installation works on the WSD Seawater Intake at Siu Sai Wan;
- S3 is an Impact Station to monitor the impacts of cable installation works on the Pamela Youde Nethersole Eastern Hospital Cooling Water Intake at Heng Fa Chuen;
- G1 is a Gradient Station between S1 and the cable alignment;
- G2 is a Gradient Station between S2 and the cable alignment;
- G3 is a Gradient Station between F1 and the cable alignment; and
- C1 is a Control Station (approximately 3 km from the proposed cable alignment) for Zone A. It is not supposed to be influenced by the Project marine installation works due to its remoteness from the works.

The co-ordinates of the above monitoring stations in Zone A are listed in *Table 3.1*.

Table 3.1Water Quality Monitoring Stations

Monitoring Station	Nature	Easting	Northing
E7	Impact Station (Coral Community)	843779	814520
E8	Impact Station (Coral Community)	843111	815126
E9	Impact Station (Coral Community)	843557	811853
F1	Impact Station (Fish Culture Zone)	847196	811056
S1	Impact Station (Seawater Intakes)	847639	805900
S2	Impact Station (Seawater Intakes)	849587	805696
S3	Impact Station (Seawater Intakes)	845474	810605
G1	Gradient Station	845297	816282
G2	Gradient Station	844071	814784
G3	Gradient Station	846099	812826
C1	Control Station	842022	816547

3.2 MONITORING PARAMETERS

The post project water quality monitoring was conducted in accordance with the requirements stated in the *Updated EM&A Manual*. Monitoring parameters are presented as below.

Parameters measured *in situ* were:

- Dissolved Oxygen (DO) (% saturation and mg L⁻¹);
- Temperature (°C);
- Turbidity (NTU); and
- Salinity (‰).

The only parameter measured in the laboratory was:

• Suspended Solids (SS) (mgL⁻¹).

In addition to the water quality parameters, other relevant data were measured and recorded in field logs, including the location of the sampling stations, water depth, time, weather conditions, sea conditions, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

3.3 MONITORING EQUIPMENT AND METHODOLOGY

3.3.1 Monitoring Equipment

Table 3.2 summaries the equipment used for the post project water quality monitoring.

	N 7 1 1
Equipment	Model
Global Positioning Device	Garmin etrex 10
Water Depth Gauge	Speedtech Instrument SM-5
Water Sampling Equipment	1520 Kemmerer Water Sampler
Salinity, DO, Temperature Measuring Meter	YSI Pro 2030
Current Velocity and Direction	Flow Probe FP11
Turbidity Meter	HACH Model 2100Q Turbid Meter

3.3.2 Monitoring Methodology

Timing & Frequency

The water monitoring was carried out on three occasions (days) and the intervals between two sets of monitoring were not less than 36 hours. The water quality sampling was undertaken within a 4 hour window of 2 hour before and 2 hour after mid flood and mid-ebb tides. The tidal range selected for the post project monitoring was at least 0.5 m for both flood and ebb tides as far as practicable.

Reference were made to the predicted tides at Tai Miu Wan, which is the tidal station nearest to the Project Site, published on the website of the Hong Kong Observatory ⁽¹⁾. Based on the predicted tidal levels at Tai Miu Wan, the post-project water quality monitoring was conducted between 10 and 15 March 2014, following the schedule presented in *Annex A*.

Sampling Depths & Replication

Each station was sampled and measurements/ water samples were taken at three depths, namely, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth less than 6 m, the mid-depth station may be omitted. For stations that are less than 3 m in depth, only the mid-depth sample was taken.

For *in situ* measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station.

Sampling/Testing Protocols

All *in situ* monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use (see calibration reports in *Annex B*), and subsequently will be re-calibrated at monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.

For the on-site calibration of field equipment, the *BS* 1427: 1993, *Guide to Field and On-Site Test Methods for the Analysis of Waters* was observed. Sufficient

(1) Hong Kong Observatory (2013) <u>http://www.hko.gov.hk/tide/eQUBtide.htm</u> [Accessed in February 2013]

stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available.

Water samples for SS measurements were collected in high density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.

Two replicate samples were collected from each of the monitoring events for *in situ* measurement and lab analysis.

3.3.3 Laboratory Analysis

All laboratory work was carried out in a HOKLAS accredited laboratory. Water samples of about 1,000 mL were collected at the monitoring and control stations for carrying out the laboratory determinations. The determination work started within the next working day after collection of the water samples. The SS laboratory measurements were provided within 2 days of the sampling event (48 hours). The analyses followed the standard methods as described in APHA Standard Methods for the *Examination of Water and Wastewater, 19th Edition,* unless otherwise specified (APHA 2540D for SS).

The QA/QC details were in accordance with requirements of HOKLAS or another internationally accredited scheme (*Annex B*).

IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

Mitigation measures for water quality control were recommended in the Project Profile (PP-452/2011) and Environmental Permit (EP-433/2011). The Contractor implemented the following select and relevant mitigation measures during cable re-installation works:

- The forward speed of the installation barge was limited to a maximum of 1 km/ hour;
- Water quality monitoring was carried out to verify that the project works were not resulting in any impacts to water quality, marine ecology and fisheries; and
- Prevention of leakage from construction equipment to reduce the runoff entering the marine waters was incorporated as part of good working practices.

POST PROJECT MONITORING RESULTS

A total of three (3) monitoring events (days) were scheduled in the monitoring period from 10 to 15 March 2014 (*Annex A*). Monitoring occasions at all designated monitoring stations within Zone A (conducted on 10, 13 and 15 March 2014) were performed on schedule. No major activities influencing the water quality were identified during the reporting period.

The post project monitoring data are presented in *Annex D* and have been compared with baseline update monitoring results.

The levels of DO measured during the post project monitoring period at different sampling depths were generally higher than those obtained during the baseline update monitoring period (*Figure D1-D3*). Elevation of DO concentration was detected at all the impact stations and the control station C1 (situated a long distance from the submarine cable alignment and not likely to be affected by the Project works) during the post project monitoring period. DO levels recorded at the impact stations were of similar magnitude to those measured at the control station C1.

Levels of Turbidity and SS measured during the post project monitoring period were generally lower compared to those measured during the baseline update monitoring period (*Figure D4-D5*). This occurred to all the monitoring stations including the control station C1, which is situated a long distance from the submarine cable alignment and not likely to be affected by the Project works. Turbidity and SS levels recorded at all the impact stations were generally of similar magnitude to those measured at the control station C1 during post project monitoring period. Replicated data at impact and control stations indicates that the situation was due to natural fluctuations.

Given the above information, particularly with regard to the control station, the overall changes in DO, Turbidity and SS levels during the post project monitoring period at all designated stations compared to baseline data are likely to represent a natural phenomenon.

CONCLUSION

This **Post Project Water Quality Monitoring Report (Zone A)** presents the EM&A work undertaken during the period from 10 to 15 March 2014 in accordance with the *Updated EM&A Manual* and the requirements under Environmental Permit (*EP- 433/2011*).

Post project water quality monitoring in Zone A was conducted within 3 weeks of confirmation that the marine cable repair works had been completed. The overall water quality at the impact stations in Zone A was found to be similar to that at the control station with higher DO levels and lower Turbidity and SS levels recorded compared to the updated baseline data. Given the fact that the control station is sufficiently far away from the cable alignment and water quality at this station could not be affected by the Project, it is concluded that the overall changes in DO, Turbidity and SS levels during the post-project monitoring period at all designated stations including the control station are likely to represent natural variation.

It is considered that no deterioration of water quality was observed between post project and baseline monitoring for this cable repair work and therefore the Project works had negligible impact on water quality. Annex A

Post Project Water Quality Monitoring Schedule (Zone A)

Asia Submarine-cable Express (ASE) – Tseung Kwan O (Zone A) Post-Project Marine Water Quality Monitoring (WQM) Schedule (10 to 15 Mar 14)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						01-Mar
02-Mar	03-Mar	04-Mar	05-Mar	06-Mar	07-Mar	08-Mar
09-Mar	10-Mar	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar
16-Mar	WQM Mid-Flood 8:19 (06:34 - 10:04) Mid-Ebb 20:50 (19:05 - 22:35) 17-Mar	18-Mar	19-Mar	WQM Mid-Ebb 10:46 (09:01 - 12:31) Mid-Flood 16:11 (14:26 - 17:56) 20-Mar	21-Mar	WQM Mid-Ebb 11:43 (09:58 - 13:28) Mid-Flood 17:36 (15:51 - 19:21) 22-Mar
23-Mar	24-Mar	25-Mar	26-Mar	27-Mar	28-Mar	29-Mar
30-Mar	31_Mar					
JU-IMar	3 i - Mar					

Annex B

Calibration Reports of Multi-parameter Sensor

uipment Ref. No.	: ET/EW	//008/006	5		Manufactu	: YSI					
odel No.	: Pro 202	30			Serial No.		: 12A 1005	54			
te of Calibration	· 19/12/2	2013			Calibration	Due Date	: 18/03/201	3- 18/03/201			
			·····				an 19/12/100	<u>م</u>			
Temperature Verific	ation										
Ref. No. of Referenc	e Thermome	eter :	ET/0521	/008				410-3			
Ref. No. of Water Ba	ith :										
				· · · · ·	Tem	perature (°C)					
Reference Th	ermometer r	eading	Measure	d	19.9	Corrected		19.6			
DO M	eter reading		Measure	:d	19.4	Difference		0.2			
Standardization of s	odium thios	ulphate (Na 2S 2O 3) so	olution							
Reagent No. of Na ₂ S	2O2 titrant		CPE/012/4.5/0	01/8 Ro	eagent No. of 0.)25N K ₂ Cr ₂ O ₇	CPE/012/4	4.4/001/23			
	2			I	Tria	1	Tris	12			
Initial Vol. of Na ₂ S ₂ (D ₃ (ml)				1.0)	12.00				
Final Vol. of Na ₂ S ₂ O	9 ₃ (ml)				11.5	5	22.	50			
Vol. of Na ₂ S ₂ O ₃ used	i (ml)				10.5	5	10.	50			
Normality of Na ₂ S ₂ O	₃ solution (N	1)			0.023	70	0.02	381			
Average Normality (N) of Na_2S_2	D_3 solutio	on (N)			0.02376)				
Acceptance criteria,	Deviation					Less than ± 0).001N				
Calculation:	Normality of	of Na_2S_2C	$D_3, N = 0.25 / 1$	nl Na ₂ S ₂ O ₃ ι	ised						
Lineality Checking											
Determination of dis	solved oxyg	en conte.	nt by Winkler	Titration *							
Purging Time (min)				2	1	5	1)			
Trial			1	2	1	2	1	2			
Initial Vol. of Na ₂ S ₂ C	D ₃ (ml)		0.00	11.30	22.70	0.00	8.40	13.20			
Final Vol. of Na ₂ S ₂ O	3 (ml)		11.30	22.70	30.80	8.40	13.20	18.10			
Vol. (V) of $Na_2S_2O_3$	used (ml)		11.30	11.40	8.10	8.40	4.80	4.90			
Dissolved Oxygen (L)0), mg/L		7.21	7.27	5.17	5.36	3.06	3.13			
Acceptance criteria,	Deviation		Less thar	n + 0.3mg/L	Less that	nn + 0.3mg/L	Less than -	+ 0.3mg/L			
Calculation:	DO (mg/L)	$= \mathbf{V} \times \mathbf{N}$	x 8000/298								
	DO	neter rea	ding mo/l	Win	kler Titration re	sult * mg/l	Difference	(%) of DO			
Purging time. min	g time. min 1 2 Average					Average	Con	tent			
2	7.10	7.30	7.20	7.21	7.27	7.24	0.5	5			
5	5.14	5.50	5.32	5.17	5.36	5.27	0.9	4			
10 3.09 3.31 3.29					3.13	3.10	5 0	5			
.10	3.09	3.31	3.29	3.00	5.15	5.10		-3			

Γ

Zero Point Checking	8								
	DO meter rea	ding, mg/l				0.00			
Salinity Checking			*******						
Reagent No. of NaC	l (10ppt)	CI	PE/012/4.7/002/13	Reage	ent No. of Na	Cl (30ppt)	CPE/012/4.8/002/13		
Determination of dis	ssolved oxyge	n content	by Winkler Titrati	on **					
Salinity (ppt)			<u>,</u>	10			30		
Trial			1		2	1	2		
Initial Vol. of Na_2S_2	O ₃ (ml)		0.00		11.80	24.10	35.20		
Final Vol. of Na_2S_2C	0 ₃ (ml)		11.80		24.10	35.20	46.50		
Vol. (V) of $Na_2S_2O_3$	used (ml)		11.80		12.30	11.10	11.30		
Dissolved Oxygen (I	DO), mg/L		7.53		7.85	7.08	7.21		
Acceptance criteria,	Deviation		Less that	n + 0.3mg	/L	Les	ss than + 0.3mg/L		
Calculation:	DO(mg/L) =	• V x N x	8000/298						
	D0 m	eter readi	ng mg/l	Winkler	Titration resu	ult** mg/L	D'00		
Salinity (ppt)	1	2	Average	1	2	Average	Content		
10	7.55	7.89	7.72	7.53	7.85	7.69	0.39		
30	7.04	7.16	7.1	7.08	7.21	7.15	0.70		
 Acceptance Criteria Differenc betwee Linear regression Zero checking: 0. Difference (%) or 	n temperature coefficient : 2 .0mg/L f DO content f	readings >0.99 from the n	from temperature s neter reading and b	ensor of I y winkler	DO probe and titration : wit	reference ther hin ± 5%	mometer : < 0.5 °C		
		ot comply	[#] with the specifie	d requiren	nents and is d	eemed accepta	able [#]		
The equipment comp ' unacceptable [#] for u ' Delete as appropria	olies [#] / does n ise. te	or compty							

Performat	Performance Check of Salinity Meter								
Equipment Ref. No. : <u>ET/EW/008/006</u> Manufacturer : <u>YSI</u>									
Model No. : <u>Pro 2030</u> Serial No. : <u>12A 100554</u>									
Date of Calibration : <u>19/12/</u>	<u>2013</u> Du	e Date : <u>18/03/2014</u>							
Ref. No. of Salinity Stand	dard used (30ppt)	S/001/5							
Salinity Standard (ppt)Measured Salinity (ppt)Difference %									
30.0	30.8	2.63							
	1								
Acceptance Criteria	Difference : <10 %	6							
The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.									
Checked by : Approved by :									

	Perfor	mance Che	ck of Turbidi	ty Meter					
Equipment Ref. No. : <u>ET/0505/010</u> Manufacturer : <u>HACH</u>									
Model No. : <u>2100Q</u> Serial No. : <u>11110 C 014260</u>									
Date	e of Calibration :	: <u>06/04/2014</u>							
	Gelex Vial Std	Theoretical Value (NTU)	Measured Value (NTU)	Difference %					
	0-10 NTU	5	5.11	2.18					
	10-100 NTU	50	51.1	2.18					
	100-1000 NTU	550	568	3.22					
- - -	L								
Acce	eptance Criteria	Difference	ce : -5 % to 5%						
	The turbidity meter and is deemed accep national standards.	complies * / does i otable * / unaccepta	not comply * with th able * for use. Measu	e specified requirements urements are traceable to					
Checked by : Approved by :									

Annex C

QA/QC Results for Suspended Solids Testing

QA/QC Results of Laboratory Analysis of Total Suspended Solids

Sampling Data	QC Sample	Sample I	Duplicate	Sample Spike				
Sampling Date	% Recovery *	Sample ID	% Error #	Sample ID	% Recovery @			
	107.4	FC1S-1	3.92	FG1S-2	98.0			
	105.3	FG1M-1	4.26	FG3M-2	93.1			
	97.8	FG3B-1	0.00	FG2B-2	97.1			
3/10/2014	106.1	FS3S-1	4.08	FS3B-2	100.0			
3/10/2014	97.5	EC1S-1	4.08	EG1S-2	101.0			
	99.2	EG1M-1	3.64	EG3M-2	104.9			
	107.0	EG3B-1	3.64	EG2B-2	96.0			
	103.0	ES3S-1	0.00	ES3B-2	98.0			
Note: (*) % Recovery of QC sample should be between 80% to 120%.								

% Recovery of QC sample should be between 80% to 120%.

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than MDL.

Sampling Date	QC Sample	Sample I	Duplicate	Sample	e Spike				
Sampling Date	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery @				
	96	FC1S-1	4.44	FG1S-2	97.0				
	105.8	FG1M-1	4.44	FG3M-2	105.9				
	98.1	FG3B-1	0.00	FG2B-2	99.0				
3/13/2014	99.8	FS3S-1	0.00	FS3B-2	101.0				
5/15/2014	107.0	EC1S-1	4.44	EG1S-2	94.2				
	105.3	EG1M-1	4.26	EG3M-2	92.2				
	106.6	EG3B-1	0.00	EG2B-2	96.0				
	104.1	ES3S-1	4.65	ES3B-2	101.0				
Note:	te: (*) % Recovery of QC sample should be between 80% to 120%.								

Note:

(#) (@)

(#)

(@)

(**)

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

(**)

% Error of Sample Duplicate >10% but invalid due to sample results less than MDL.

Sampling Data	QC Sample	Sample I	Duplicate	Sample	e Spike				
Sampling Date	% Recovery *	Sample ID	% Error [#]	Sample ID	% Recovery @				
	100.2	FC1S-1	4.08	FG1S-2	99.0				
	93.1	FG1M-1	0.00	FG3M-2	97.1				
	92.7	FG3B-1	0.00	FG2B-2	92.2				
2/15/2014	104.5	FS3S-1	0.00	FS3B-2	95.2				
3/13/2014	106.7	EC1S-1	0.00	EG1S-2	95.0				
	94.8	EG1M-1	0.00	EG3M-2	94.1				
	96.9	EG3B-1	0.00	EG2B-2	104.9				
	92.8	ES3S-1	4.88	ES3B-2	104.8				
Note:	Note: (*) % Recovery of QC sample should be between 80% to 120%.								

(#)

(@)

(**)

% Error of Sample Duplicate should be between 0% to 10%.

% Recovery of Sample Spike should be between 80% to 120%.

% Error of Sample Duplicate >10% but invalid due to sample results less than MDL.

Annex D

Post Project Water Quality Monitoring Results (Zone A)

Date:	10-Mar-14
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave
Zone A	

Location	Sampling	Water	Current	Current	Monitoring	Temp	erratu	re (°C)		Salinit (ppt)	y		DO (mg/l))	DC) Satura (%)	tion		Turi (N	bidity TU)		Su	ıspend (m	led Sol Ig/l)	ids
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	16.7	16.8	16.8	29.6	29.5	29.6	7.1	7.1	7.1	87.0	87.2	87.1	3.4	3.3	3.3		5.0	5.0	5.0	
C1	0809-0817	36.8	W	0.2	Middle	16.8	16.7	16.8	29.6	29.7	29.7	6.7	6.7	6.7	83.3	82.7	83.0	3.7	3.7	3.7	3.7	5.5	5.5	5.5	5.5
					Bottom	16.7	16.6	16.7	29.8	29.8	29.8	6.6	6.6	6.6	81.4	81.7	81.6	4.0	4.0	4.0		5.9	6.0	6.0	
					Surface	16.6	16.7	16.7	29.5	29.6	29.6	7.0	6.9	7.0	86.8	85.6	86.2	3.4	3.5	3.5		5.1	5.1	5.1	
E8	0820-0828	18.4	W	0.3	Middle	16.7	16.6	16.7	29.6	29.7	29.7	6.9	6.9	6.9	85.0	85.4	85.2	3.7	3.6	3.6	3.7	5.4	5.3	5.4	5.5
					Bottom	16.6	16.5	16.6	29.9	29.8	29.9	6.5	6.4	6.4	79.7	79.6	79.7	4.0	3.9	4.0		5.9	6.1	6.0	
					Surface	16.7	16.6	16.7	29.6	29.5	29.6	7.0	7.0	7.0	86.3	86.8	86.6	3.0	3.0	3.0		4.4	4.5	4.5	
S1	0831-0839	9.6	W	0.4	Middle	16.5	16.6	16.6	26.6	29.6	28.1	6.8	6.8	6.8	83.9	83.6	83.8	3.2	3.3	3.2	3.4	4.7	4.8	4.8	5.0
					Bottom	16.5	16.6	16.6	29.8	29.7	29.8	6.7	6.7	6.7	83.1	82.6	82.9	3.8	3.8	3.8		5.7	5.6	5.7	
					Surface	16.7	16.7	16.7	29.7	29.6	29.7	6.8	6.8	6.8	83.6	83.9	83.8	3.0	3.0	3.0		4.6	4.6	4.6	
G1	0842-0850	12.4	W	0.3	Middle	16.7	16.6	16.7	29.7	29.8	29.8	7.0	7.0	7.0	86.8	87.0	86.9	3.1	3.1	3.1	3.2	4.8	4.8	4.8	4.9
					Bottom	16.6	16.7	16.7	29.8	29.9	29.9	6.8	6.8	6.8	83.8	84.1	84.0	3.6	3.5	3.5		5.4	5.2	5.3	
					Surface	16.8	16.7	16.8	29.6	29.7	29.7	7.0	6.9	6.9	86.0	85.8	85.9	3.1	3.1	3.1		4.5	4.6	4.6	
E7	0853-0901	13.6	W	0.3	Middle	16.7	16.6	16.7	29.8	29.7	29.8	6.7	6.7	6.7	82.6	82.8	82.7	4.3	4.3	4.3	4.0	6.4	6.6	6.5	6.0
					Bottom	16.7	16.8	16.8	29.8	29.9	29.9	6.5	6.6	6.5	81.0	81.2	81.1	4.4	4.4	4.4		6.8	7.0	6.9	
					Surface	16.8	16.9	16.9	29.7	29.8	29.8	7.0	7.0	7.0	86.3	86.1	86.2	3.2	3.2	3.2		4.6	4.7	4.7	
F1	0904-0912	12.8	W	0.4	Middle	16.8	16.7	16.8	29.7	29.7	29.7	6.5	6.6	6.5	80.9	81.1	81.0	4.5	4.5	4.5	4.1	6.3	6.5	6.4	6.0
					Bottom	16.7	16.7	16.7	29.8	29.7	29.8	6.4	6.4	6.4	79.3	79.6	79.5	4.7	4.7	4.7		7.1	7.0	7.1	
					Surface	16.7	16.6	16.7	29.6	29.6	29.6	6.9	6.9	6.9	84.7	85.1	84.9	2.9	3.0	2.9		4.3	4.3	4.3	
G3	0915-0923	16.4	W	0.3	Middle	16.7	16.8	16.8	29.6	29.7	29.7	6.7	6.7	6.7	82.9	83.3	83.1	3.2	3.2	3.2	3.5	4.8	5.0	4.9	5.2
					Bottom	16.8	16.7	16.8	29.8	29.7	29.8	6.5	6.5	6.5	80.0	80.2	80.1	4.4	4.4	4.4		6.4	6.6	6.5	
					Surface	16.7	16.7	16.7	29.7	29.7	29.7	6.8	6.8	6.8	83.7	84.1	83.9	3.2	3.2	3.2		4.6	4.8	4.7	
E9	0926-0934	13.8	W	0.2	Middle	16.7	16.6	16.7	29.6	29.7	29.7	6.4	6.4	6.4	79.7	79.0	79.4	4.3	4.4	4.4	3.9	6.3	6.5	6.4	5.9
					Bottom	16.6	16.5	16.6	29.8	29.8	29.8	6.6	6.6	6.6	81.7	81.4	81.6	4.1	4.2	4.1		6.4	6.6	6.5	
					Surface	16.7	16.8	16.8	29.6	29.5	29.6	6.9	7.0	7.0	86.0	86.7	86.4	3.6	3.6	3.6		5.2	5.4	5.3	
S2	0937-0945	12.4	W	0.3	Middle	16.7	16.6	16.7	29.6	29.7	29.7	6.6	6.7	6.7	82.0	82.9	82.5	4.1	4.1	4.1	3.9	6.3	6.4	6.4	5.9
					Bottom	16.6	16.5	16.6	29.7	29.8	29.8	6.5	6.5	6.5	80.7	80.2	80.5	4.0	3.9	3.9		6.2	6.1	6.2	
					Surface	16.8	16.7	16.8	29.7	29.6	29.7	7.0	7.0	7.0	86.8	87.0	86.9	2.9	2.9	2.9		4.2	4.4	4.3	
G2	0948-0956	14.2	W	0.3	Middle	16.7	16.6	16.7	29.7	29.8	29.8	6.7	6.7	6.7	83.4	83.0	83.2	3.0	3.1	3.0	3.3	4.6	4.7	4.7	5.0
					Bottom	16.6	16.7	16.7	29.8	29.7	29.8	6.4	6.4	6.4	79.7	79.1	79.4	4.1	4.0	4.0		6.2	6.0	6.1	
					Surface	16.7	16.6	16.7	29.6	29.5	29.6	7.1	7.0	7.1	87.3	87.2	87.3	3.2	3.2	3.2		5.0	4.9	5.0	
S3	0959-1004	12.2	W	0.4	Middle	16.6	16.5	16.6	29.6	29.7	29.7	6.8	6.8	6.8	84.4	84.5	84.5	3.6	3.6	3.6	3.6	5.7	5.5	5.6	5.6
					Bottom	16.6	16.6	16.6	29.7	29.8	29.8	6.6	6.6	6.6	81.2	81.9	81.6	4.1	4.0	4.0		6.1	6.2	6.2	

Note: * Average

Date:	10-Mar-14
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Calm
Zone A	

Location	Sampling	Water	Current	Current	Monitoring	Temp	perratu	ıre (°C)		Salinit (ppt)	у		DO (mg/l))	DC) Satura (%)	tion		Turi (N	oidity TU)		Su	ispend (m	led Soli ıg/l)	ids
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	16.8	16.8	16.8	29.7	29.7	29.7	6.9	6.9	6.9	85.7	85.8	85.8	3.5	3.5	3.5		5.0	5.2	5.1	
C1	1905-1922	36.6	W	0.2	Middle	16.8	16.8	16.8	29.7	29.7	29.7	6.8	6.8	6.8	84.4	84.5	84.5	3.6	3.6	3.6	3.6	5.5	5.6	5.6	5.5
					Bottom	16.7	16.7	16.7	29.8	29.8	29.8	6.7	6.7	6.7	82.8	82.6	82.7	3.7	3.7	3.7		5.8	6.0	5.9	
					Surface	16.7	16.7	16.7	29.6	29.6	29.6	6.9	6.9	6.9	85.0	84.9	85.0	3.5	3.5	3.5		5.2	5.2	5.2	
E8	1927-1938	18.2	W	0.2	Middle	16.8	16.8	16.8	29.7	29.7	29.7	6.7	6.7	6.7	82.7	82.7	82.7	3.7	3.7	3.7	3.6	5.7	5.6	5.7	5.6
					Bottom	16.7	16.8	16.8	29.8	29.8	29.8	6.5	6.6	6.5	80.7	80.8	80.8	3.7	3.8	3.7		5.8	5.9	5.9	
					Surface	16.7	16.7	16.7	29.7	29.7	29.7	6.9	6.9	6.9	84.9	84.8	84.9	3.3	3.3	3.3		4.8	5.0	4.9	
S1	1943-1955	9.4	W	0.3	Middle	16.8	16.8	16.8	29.8	29.8	29.8	6.7	6.7	6.7	83.1	83.2	83.2	3.4	3.4	3.4	3.4	5.2	5.2	5.2	5.2
					Bottom	16.8	16.8	16.8	29.9	29.9	29.9	6.7	6.7	6.7	82.4	82.3	82.4	3.5	3.5	3.5		5.4	5.4	5.4	
					Surface	16.8	16.8	16.8	29.7	29.7	29.7	6.8	6.8	6.8	83.9	83.8	83.9	3.3	3.3	3.3		5.1	5.2	5.2	
G1	2000-2011	12.2	W	0.2	Middle	16.8	16.8	16.8	29.8	29.8	29.8	6.7	6.7	6.7	82.4	82.5	82.5	3.5	3.5	3.5	3.5	5.4	5.5	5.5	5.5
					Bottom	16.9	16.9	16.9	29.8	29.8	29.8	6.6	6.6	6.6	81.5	81.8	81.7	3.7	3.8	3.7		5.9	5.8	5.9	
					Surface	16.7	16.7	16.7	29.6	29.6	29.6	6.8	6.8	6.8	84.3	84.4	84.4	3.6	3.6	3.6		5.4	5.6	5.5	
E7	2016-2027	12.4	W	0.2	Middle	16.8	16.8	16.8	29.8	29.8	29.8	6.7	6.7	6.7	83.2	83.3	83.3	3.7	3.7	3.7	3.7	5.8	5.9	5.9	5.8
					Bottom	16.8	16.8	16.8	29.8	29.8	29.8	6.6	6.6	6.6	81.9	82.0	82.0	3.8	3.8	3.8		6.0	6.0	6.0	
					Surface	16.8	16.8	16.8	29.7	29.7	29.7	6.9	6.8	6.8	84.7	84.6	84.7	3.3	3.3	3.3		4.6	4.8	4.7	
F1	2032-2044	12.6	W	0.3	Middle	16.8	16.7	16.8	29.8	29.8	29.8	6.7	6.8	6.7	83.3	83.4	83.4	3.4	3.4	3.4	3.4	5.1	5.2	5.2	5.2
					Bottom	16.7	16.7	16.7	29.8	29.8	29.8	6.7	6.7	6.7	82.3	82.4	82.4	3.6	3.6	3.6		5.6	5.6	5.6	<u> </u>
		10.0			Surface	16.7	16.8	16.8	29.7	29.7	29.7	6.9	6.9	6.9	85.4	85.5	85.5	3.0	3.0	3.0		4.4	4.5	4.5	
G3	2049-2100	16.2	W	0.3	Middle	16.8	16.8	16.8	29.8	29.8	29.8	6.8	6.8	6.8	84.4	84.2	84.3	3.3	3.4	3.3	3.3	5.2	5.4	5.3	5.1
					Bottom	16.8	16.7	16.8	29.8	29.8	29.8	6.7	6.7	6.7	82.4	82.1	82.3	3.6	3.6	3.6		5.6	5.6	5.6	
-		10.0			Surface	16.7	16.7	16.7	29.8	29.8	29.8	6.7	6.7	6.7	82.4	82.5	82.5	3.3	3.3	3.3		5.0	5.0	5.0	
E9	2105-2116	13.6	w	0.3	Middle	16.8	16.8	16.8	29.8	29.9	29.9	6.6	6.6	6.6	81.9	82.0	82.0	3.4	3.4	3.4	3.4	5.2	5.4	5.3	5.3
					Bottom	16.8	16.7	16.8	29.8	29.9	29.9	6.5	6.5	6.5	80.7	80.3	80.5	3.6	3.6	3.6		5.6	5.6	5.6	
<u></u>	0101 0100	10.0	14/	0.0	Surrace	16.7	16.7	16.7	29.6	29.6	29.6	6.8	6.8	6.8	84.0	84.2	84.1	3.4	3.4	3.4	0.5	5.3	5.3	5.3	5.0
52	2121-2132	12.3	vv	0.2	Nildale	16.8	16.7	16.8	29.7	29.8	29.8	6.9	6.9	6.9	85.3	85.2	85.3	3.5	3.5	3.5	3.5	5.5	5.5	5.5	5.6
					Bottom	16.8	16.8	16.8	29.8	29.8	29.8	6.7	6.7	6.7	82.4	82.5	82.5	3.7	3.7	3.7		5.8	5.9	5.9	
<u></u>	0107 0140	14.0	10/	0.2	18	16.7	16.8	16.8	29.7	29.7	29.7	6.9	6.9	6.9	85.4	85.5	85.5	3.3	3.3	3.3	2.5	5.1	5.2	5.2	
62	2137-2140	14.0	vv	0.2	18.1	16.7	10.8	10.8	29.8	29.8	29.8	0.8	0.8	0.8	84.0	84.0	84.0	3.5	3.5	3.5	3.5	5.4	5.4	5.4	5.5
					18.1	16.8	16.0	16.0	29.8	29.8	29.8	6.7	6.0	6.0	82.7	84.0	84.0	3.7	3.7	3.7		5.0	6.U	5.0	
62	0150 0005	12.0	10/	0.2	Suriace	16.7	16.0	16.0	29.7	29.7	29.7	6.9	6.9	6.9	84.8	84.9	84.9	3.3	3.3	3.3	24	5.0	5.4	5.2	5.6
	2153-2205	12.0	vv	0.3	Rottom	16.7	16.0	16.0	29.8	29.8	29.8	0.7	0.0	0.7	83.2	83.4	01.0	3.4	3.4	3.4	3.4	5.6	0.0	5.0	5.6
					Bottom	10.8	10.8	10.8	29.8	29.8	29.8	0.6	0.0	0.6	81.8	81.8	81.8	3.6	3.6	3.6		5.8	0.0	5.9	1

Note: * Average

^{**} Depth Average

Date:	13-Mar-14
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Calm
Zone A	

Location	Sampling	Water	Current	Current	Monitoring	Temp	Femperrature (°C)			Salinity (ppt)			DO (mg/l)			Satura (%)		Turi (N	bidity TU)		Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.0	17.1	17.1	29.7	29.7	29.7	7.0	7.1	7.0	86.9	87.1	87.0	3.4	3.4	3.4		4.4	4.4	4.4	
C1	1426-1441	36.9	W	0.3	Middle	17.1	17.2	17.2	29.8	29.9	29.9	6.9	6.9	6.9	85.7	86.0	85.9	3.6	3.6	3.6	3.6	4.5	4.6	4.6	4.5
					Bottom	17.3	17.4	17.4	29.9	29.9	29.9	6.8	6.8	6.8	84.1	84.3	84.2	3.7	3.7	3.7		4.7	4.6	4.7	
					Surface	17.0	17.0	17.0	29.7	29.8	29.8	7.0	7.0	7.0	86.1	86.3	86.2	3.4	3.5	3.4		4.4	4.6	4.5	
E8	1446-1500	18.4	W	0.2	Middle	17.1	17.2	17.2	29.8	29.8	29.8	6.7	6.7	6.7	83.4	83.6	83.5	3.6	3.6	3.6	3.6	4.7	4.5	4.6	4.6
					Bottom	17.2	17.3	17.3	29.9	29.8	29.9	6.6	6.6	6.6	82.2	82.5	82.4	3.7	3.7	3.7		4.6	4.8	4.7	
					Surface	17.0	17.1	17.1	29.7	29.7	29.7	6.9	6.9	6.9	85.6	85.3	85.5	3.2	3.2	3.2		4.3	4.4	4.4	
S1	1505-1519	9.6	W	0.2	Middle	17.2	17.3	17.3	29.7	29.8	29.8	6.8	6.8	6.8	84.6	84.9	84.8	3.3	3.3	3.3	3.3	4.4	4.5	4.5	4.5
					Bottom	17.3	17.4	17.4	29.9	29.8	29.9	6.7	6.8	6.7	83.6	83.9	83.8	3.4	3.4	3.4		4.6	4.5	4.6	
					Surface	17.0	17.0	17.0	29.7	29.7	29.7	6.9	6.9	6.9	85.1	84.9	85.0	3.2	3.3	3.3		4.4	4.2	4.3	
G1	1524-1538	12.4	W	0.3	Middle	17.1	17.2	17.2	29.8	29.8	29.8	6.8	6.8	6.8	83.7	83.9	83.8	3.4	3.4	3.4	3.5	4.4	4.6	4.5	4.5
					Bottom	17.2	17.3	17.3	29.9	29.9	29.9	6.7	6.7	6.7	82.8	83.1	83.0	3.7	3.7	3.7		4.7	4.8	4.8	
					Surface	17.0	17.0	17.0	29.6	29.7	29.7	6.9	6.9	6.9	85.2	85.5	85.4	3.5	3.5	3.5		4.8	4.6	4.7	
E7	1543-1557	12.6	W	0.3	Middle	17.1	17.2	17.2	29.7	29.7	29.7	6.8	6.8	6.8	83.9	84.1	84.0	3.6	3.7	3.6	3.6	4.7	4.9	4.8	4.8
					Bottom	17.3	17.4	17.4	29.8	29.9	29.9	6.7	6.7	6.7	83.2	83.4	83.3	3.8	3.8	3.8		4.8	4.9	4.9	
					Surface	17.0	17.1	17.1	29.6	29.6	29.6	6.9	7.0	7.0	85.8	86.0	85.9	3.2	3.2	3.2		4.3	4.2	4.3	
F1	1602-1616	12.8	W	0.2	Middle	17.2	17.3	17.3	29.7	29.8	29.8	6.8	6.8	6.8	84.3	84.5	84.4	3.3	3.3	3.3	3.4	4.5	4.4	4.5	4.5
					Bottom	17.4	17.5	17.5	29.8	29.9	29.9	6.8	6.8	6.8	83. 8	84.0	84.0	3.5	3.5	3.5		4.6	4.8	4.7	
					Surface	17.0	17.0	17.0	29.6	29.7	29.7	7.0	7.1	7.1	87.1	87.3	87.2	2.9	3.0	3.0		3.8	4.0	3.9	
G3	1621-1636	16.4	W	0.3	Middle	17.1	17.2	17.2	29.7	29.7	29.7	7.0	7.0	7.0	86.4	86.6	86.5	3.3	3.3	3.3	3.3	4.2	4.4	4.3	4.3
					Bottom	17.3	17.4	17.4	29.8	29.7	29.8	6.8	6.8	6.8	84.1	84.3	84.2	3.5	3.5	3.5		4.6	4.6	4.6	
					Surface	17.0	17.1	17.1	29.6	29.7	29.7	6.8	6.8	6.8	84.0	84.2	84.1	3.2	3.2	3.2		4.2	4.3	4.3	
E9	1641-1656	13.8	W	0.3	Middle	17.2	17.2	17.2	29.8	29.7	29.8	6.7	6.7	6.7	83.5	83.3	83.4	3.4	3.3	3.3	3.4	4.4	4.5	4.5	4.5
					Bottom	17.3	17.3	17.3	29.9	29.9	29.9	6.6	6.6	6.6	88.2	88.4	88.3	3.5	3.5	3.5		4.6	4.7	4.7	
					Surface	17.0	17.1	17.1	29.6	29.7	29.7	6.9	6.9	6.9	85.1	85.3	85.2	3.3	3.4	3.4		4.3	4.4	4.4	
S2	1701-1716	12.5	W	0.2	Middle	17.1	17.2	17.2	29.7	29.8	29.8	7.0	7.0	7.0	87.0	87.3	87.2	3.4	3.5	3.4	3.5	4.5	4.5	4.5	4.6
					Bottom	17.3	17.4	17.4	29.8	29.9	29.9	6.8	6.8	6.8	84.1	83.9	84.0	3.6	3.6	3.6		4.8	4.9	4.9	
					Surface	17.0	17.0	17.0	29.6	29.6	29.6	7.1	7.1	7.1	87.7	87.9	87.8	3.2	3.3	3.3		4.2	4.5	4.4	
G2	1721-1736	14.3	W	0.2	Middle	17.1	17.1	17.1	29.7	29.6	29.7	6.9	7.0	7.0	86.1	86.3	86.2	3.4	3.4	3.4	3.4	4.4	4.6	4.5	4.5
					Bottom	17.2	17.3	17.3	29.8	29.8	29.8	6.7	6.7	6.7	83.5	83.3	83.4	3.7	3.7	3.7		4.7	4.8	4.8	
					Surface	17.0	17.1	17.1	29.6	29.6	29.6	7.0	7.0	7.0	86.0	86.3	86.2	3.2	3.2	3.2		4.2	4.2	4.2	
S3	1741-1756	12.3	W	0.2	Middle	17.2	17.2	17.2	29.7	29.7	29.7	6.8	6.8	6.8	84.3	84.5	84.4	3.2	3.3	3.3	3.3	4.3	4.3	4.3	4.4
					Bottom	17.3	17.4	17.4	29.8	29.8	29.8	6.7	6.7	6.7	82.8	83.1	83.0	3.4	3.4	3.4		4.5	4.6	4.6	

Note: * Average

Date:	13-Mar-14
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Calm
Zone A	

Location	Sampling	Water	Current	Current	Monitoring	Temperrature (°C)			Salinity (ppt)			DO (mg/l)			DC) Satura (%)	Turbidity (NTU)				Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	1 2 Ave.*		1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.2	17.1	17.2	29.9	29.8	29.9	7.0	7.0	7.0	84.5	84.2	84.4	3.4	3.4	3.4		4.4	4.7	4.6	
C1	0915-0926	36.2	W	0.3	Middle	17.3	17.2	17.3	29.8	29.8	29.8	6.9	6.8	6.8	82.2	81.9	82.1	3.6	3.6	3.6	3.6	4.8	4.6	4.7	4.7
					Bottom	17.2	17.4	17.3	29.9	29.9	29.9	6.6	6.7	6.6	79.7	80.2	80.0	3.7	3.7	3.7		4.7	4.8	4.8	
					Surface	17.1	17.0	17.1	29.8	29.6	29.7	6.9	6.9	6.9	82.6	82.4	82.5	3.4	3.5	3.4		4.3	4.2	4.3	
E8	0932-0943	18.1	W	0.3	Middle	17.3	17.2	17.3	29.9	29.9	29.9	6.7	6.8	6.8	81.1	81.5	81.3	3.6	3.7	3.7	3.6	4.7	4.8	4.8	4.6
					Bottom	17.2	17.2	17.2	29.8	29.9	29.9	6.6	6.7	6.7	79.8	80.4	80.1	3.7	3.7	3.7		4.7	4.8	4.8	
					Surface	17.1	17.2	17.2	29.9	29.8	29.9	6.9	6.9	6.9	82.8	82.9	82.9	3.4	3.4	3.4		4.6	4.5	4.6	
S1	0949-0959	9.3	W	0.3	Middle	17.3	17.2	17.3	29.8	29.8	29.8	6.7	6.7	6.7	80.3	80.1	80.2	3.6	3.6	3.6	3.6	4.4	4.6	4.5	4.6
					Bottom	17.4	17.4	17.4	29.9	29.9	29.9	6.6	6.6	6.6	79.1	79.3	79.2	3.7	3.7	3.7		4.6	4.8	4.7	
					Surface	17.1	17.0	17.1	29.8	29.8	29.8	6.8	6.8	6.8	81.2	81.4	81.3	3.3	3.3	3.3		4.3	4.2	4.3	
G1	1005-1016	12.1	W	0.3	Middle	17.2	17.3	17.3	29.9	29.8	29.9	6.7	6.7	6.7	80.7	80.4	80.6	3.5	3.4	3.4	3.5	4.6	4.3	4.5	4.5
					Bottom	17.4	17.3	17.4	29.7	29.8	29.8	6.5	6.6	6.6	78.8	79.4	79.1	3.7	3.7	3.7		4.8	4.5	4.7	L
					Surface	17.1	17.2	17.2	29.7	29.6	29.7	6.8	6.8	6.8	82.2	81.8	82.0	3.5	3.5	3.5		4.6	4.8	4.7	
E7	1022-1035	12.3	W	0.3	Middle	17.3	17.4	17.4	29.7	29.7	29.7	6.7	6.7	6.7	80.7	80.8	80.8	3.6	3.7	3.7	3.7	4.7	4.9	4.8	4.7
					Bottom	17.4	17.4	17.4	29.9	29.8	29.9	6.5	6.6	6.5	78.5	79.1	78.8	3.8	3.8	3.8		4.6	4.8	4.7	<u> </u>
		10.1			Surface	17.0	17.2	17.1	29.8	29.7	29.8	6.8	6.8	6.8	82.3	82.4	82.4	3.3	3.3	3.3		4.5	4.6	4.6	
F1	1040-1050	12.4	vv	0.2	Middle	17.3	17.4	17.4	29.7	29.8	29.8	6.8	6.8	6.8	84.1	81.3	82.7	3.3	3.3	3.3	3.4	4.4	4.3	4.4	4.5
					Bottom	17.2	17.4	17.3	29.9	29.8	29.9	6.7	6.7	6.7	83.3	83.2	83.3	3.5	3.6	3.5		4.6	4.8	4.7	<u> </u>
<u></u>	1050 1100	10.0	14/	0.0	Surface	17.2	17.1	17.2	29.7	29.7	29.7	7.0	7.0	7.0	86.7	86.6	86.6	3.0	3.0	3.0		3.8	4.0	3.9	4.0
G3	1020-1108	16.0	vv	0.3	Nildale	17.4	17.3	17.4	29.8	29.7	29.8	6.9	6.9	6.9	85.1	85.2	85.2	3.3	3.3	3.3	3.3	4.3	4.4	4.4	4.3
					Bollom	17.5	17.4	17.5	29.8	29.8	29.8	6.7	6.7	6.7	83.7	83.3	83.5	3.5	3.0	3.6		4.0	4.6	4.6	
FQ	1115 1127	12.6	10/	0.2	Middlo	17.2	17.1	17.2	29.0	29.7	29.0	6.7	6.7	6.6	03.0 92.5	00.4 92.1	03.2	3.2	3.2 2.4	3.2	24	4.2	4.3	4.3	4.4
23	11131127	13.0	**	0.5	Bottom	17.5	17.5	17.5	29.9	29.0	29.9	6.6	6.6	6.6	82.5	82.0	82.3	3.4	3.4	3.4	3.4	4.4	4.2	4.3	4.4
					Surface	17.3	17.4	17.3	29.7	29.7	29.7	6.8	6.7	6.7	83.7	83.1	83.4	3.4	3.4	3.4		4.0	4.3	4.7	-
52	1132-1143	12.1	W	0.2	Middle	17.2	17.1	17.2	20.7	20.7	20.7	6.0	6.0	6.9	85.2	85.6	85.4	3.5	3.5	3.5	35	4.5	4.5	4.6	45
02	1102 1140	12.1		0.2	Bottom	17.5	17.2	17.5	20.0	20.0	20.0	6.7	6.6	6.7	82.7	82.5	82.6	3.6	3.6	3.6	0.0	4.5	4.5	4.6	4.0
					Surface	17.4	17.5	17.3	29.6	29.7	29.7	7.0	7.0	7.0	86.3	86.2	86.3	3.3	3.3	3.3		4.7	4.2	4.3	-
G2	1149-1205	14.0	w	0.2	Middle	17.3	17.2	17.3	29.7	29.8	29.8	6.8	6.8	6.8	84.4	84.7	84.6	3.4	3.4	3.4	3.5	4.3	4.4	4.4	4.5
					Bottom	17.4	17.5	17.5	29.8	29.8	29.8	6.7	6.6	6.6	82.6	82.2	82.4	3.7	3.7	3.7		4.7	4.8	4.8	
					Surface	17.2	17.1	17.2	29.7	29.6	29.7	6.9	6.9	6.9	85.1	84.9	85.0	3.2	3.2	3.2		4.4	4.2	4.3	
S3	1212-1230	12.0	w	0.2	Middle	17.2	17.4	17.3	29.8	29.9	29.9	6.7	6.7	6.7	83.2	83.6	83.4	3.3	3.3	3.3	3.3	4.3	4.4	4.4	4.4
					Bottom	17.5	17.4	17.5	29.9	29.9	29.9	6.5	6.6	6.5	81.0	81.5	81.3	3.5	3.5	3.5		4.6	4.6	4.6	

Note: * Average

Date:	15-Mar-14
Tide:	Mid-Flood
Weather:	Cloudy
Sea Conditions:	Small Wave
Zone A	

Lasatian	Sampling	Water	Current	Current	Monitoring	Temperrature (°C)			Salinity (ppt)				DO (mg/l)) Satura (%)		Turt (N	oidity TU)		Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	2 Ave.		1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.0	17.1	17.1	29.5	29.6	29.6	7.3	7.3	7.3	89.9	90.2	90.1	3.7	3.8	3.8		5.0	5.0	5.0	
C1	1551-1606	36.8	E	0.4	Middle	17.2	17.3	17.3	29.7	29.7	29.7	7.0	7.1	7.1	87.0	87.4	87.2	3.9	4.0	4.0	3.8	5.2	5.3	5.3	5.0
					Bottom	17.4	17.3	17.4	29.7	29.8	29.8	6.9	6.9	6.9	85.5	85.8	85.7	3.6	3.6	3.6		4.7	4.8	4.8	
					Surface	17.1	17.1	17.1	29.4	29.5	29.5	7.1	7.1	7.1	87.9	87.7	87.8	3.4	3.3	3.4		4.5	4.6	4.6	
E8	1611-1626	15.8	E	0.3	Middle	17.2	17.2	17.2	29.6	29.6	29.6	7.0	7.0	7.0	86.6	86.8	86.7	3.7	3.7	3.7	3.7	4.7	4.8	4.8	4.8
					Bottom	17.3	17.2	17.3	29.7	29.7	29.7	6.8	6.9	6.8	84.2	84.6	84.4	3.9	3.9	3.9		5.0	5.2	5.1	
					Surface	17.0	17.0	17.0	29.5	29.5	29.5	7.4	7.5	7.5	91.6	92.4	92.0	3.4	3.4	3.4		4.6	4.8	4.7	
S1	1631-1646	9.8	E	0.3	Middle	17.1	17.2	17.2	29.6	29.6	29.6	7.2	7.3	7.3	89.4	89.9	89.7	3.7	3.7	3.7	3.7	4.8	4.9	4.9	4.9
					Bottom	17.3	17.3	17.3	29.7	29.7	29.7	7.1	7.2	7.2	88.0	88.5	88.3	3.9	3.9	3.9		5.0	5.1	5.1	
					Surface	17.1	17.0	17.1	29.4	29.4	29.4	7.3	7.3	7.3	90.1	90.3	90.2	3.7	3.6	3.6		4.8	4.8	4.8	
G1	1651-1706	12.4	E	0.2	Middle	17.2	17.1	17.2	29.5	29.6	29.6	7.1	7.1	7.1	87.9	87.6	87.8	3.8	3.8	3.8	3.7	5.0	4.8	4.9	4.8
					Bottom	17.3	17.2	17.3	29.7	29.7	29.7	6.9	6.9	6.9	84.9	85.2	85.1	3.7	3.7	3.7		4.7	4.9	4.8	
					Surface	17.1	17.1	17.1	29.5	29.6	29.6	7.3	7.3	7.3	89.9	90.2	90.1	3.3	3.2	3.3		4.3	4.5	4.4	
E7	1711-1726	13.0	E	0.2	Middle	17.2	17.2	17.2	29.7	29.7	29.7	7.2	7.2	7.2	89.3	89.0	89.2	3.6	3.5	3.5	3.5	4.7	4.6	4.7	4.7
					Bottom	17.3	17.3	17.3	29.8	29.7	29.8	6.9	7.0	7.0	85.6	86.1	85.9	3.7	3.6	3.7		4.9	5.0	5.0	
			_		Surface	17.2	17.1	17.2	29.5	29.5	29.5	7.3	7.4	7.4	90.6	91.1	90.9	3.4	3.5	3.5		4.6	4.5	4.6	
F1	1731-1746	13.4	E	0.3	Middle	17.2	17.3	17.3	29.6	29.6	29.6	7.2	7.2	7.2	88.5	88.8	88.7	3.7	3.7	3.7	3.7	4.8	4.7	4.8	4.8
					Bottom	17.3	17.4	17.4	29.7	29.7	29.7	6.9	6.8	6.9	84.9	84.5	84.7	3.9	3.8	3.8		5.0	5.1	5.1	<u> </u>
			_		Surface	17.2	17.2	17.2	29.6	29.6	29.6	7.2	7.2	7.2	88.5	88.8	88.7	3.8	3.7	3.8		4.9	4.8	4.9	
G3	1750-1806	16.8	E	0.3	Middle	17.3	17.2	17.3	29.7	29.7	29.7	7.1	7.0	7.0	87.1	86.6	86.9	3.9	4.0	4.0	3.8	5.0	5.2	5.1	4.9
					Bottom	17.3	17.3	17.3	29.7	29.8	29.8	6.7	6.8	6.8	82.9	83.7	83.3	3.5	3.6	3.6		4.6	4.8	4.7	
			_		Surface	17.1	17.1	17.1	29.6	29.6	29.6	7.4	7.4	7.4	91.6	91.4	91.5	3.3	3.4	3.4		4.2	4.4	4.3	
E9	1811-1824	14.0	E	0.2	Middle	17.2	17.2	17.2	29.7	29.7	29.7	7.3	7.4	7.4	90.6	90.9	90.8	3.6	3.7	3.7	3.7	4.7	4.8	4.8	4.7
					Bottom	17.3	17.3	17.3	29.7	29.7	29.7	7.1	7.0	7.1	87.3	86.8	87.1	3.9	4.0	4.0		5.2	5.1	5.2	<u> </u>
			_		Surface	17.1	17.1	17.1	29.5	29.5	29.5	7.2	7.1	7.2	88.5	88.0	88.3	3.6	3.6	3.6		4.4	4.5	4.5	
S2	1826-1841	12.8	E	0.4	Middle	17.2	17.2	17.2	29.7	29.7	29.7	7.0	7.0	7.0	86.4	86.7	86.6	3.8	3.9	3.9	3.8	4.8	4.7	4.8	4.8
					Bottom	17.3	17.3	17.3	29.7	29.8	29.8	6.8	6.8	6.8	83.5	83.9	83.7	3.9	4.0	3.9		5.0	5.1	5.1	
	1010 1001	110	_		Surface	17.1	17.1	17.1	29.6	29.6	29.6	7.5	7.5	7.5	93.0	92.6	92.8	3.8	3.7	3.8		4.7	4.6	4.7	
G2	1846-1901	14.0	E	0.3	Middle	17.2	17.2	17.2	29.7	29.7	29.7	7.2	7.2	7.2	88.3	88.7	88.5	4.0	3.9	3.9	3.9	5.0	5.1	5.1	4.8
					Bottom	17.3	17.3	17.3	29.7	29.8	29.8	7.0	7.1	7.0	86.6	87.3	87.0	3.8	3.9	3.9		4.8	4.8	4.8	
	1000 1001	10.0	_		Surface	17.1	17.1	17.1	29.6	29.6	29.6	7.4	7.4	7.4	91.1	91.3	91.2	3.4	3.5	3.5	0.7	4.2	4.3	4.3	47
53	1906-1921	12.0	E	0.2	Middle	17.3	17.2	17.3	29.7	29.7	29.7	7.1	7.1	7.1	87.9	87.6	87.8	3.7	3.8	3.8	3.7	4.8	4.6	4.7	4.7
					Bottom	17.3	17.3	17.3	29.7	29.8	29.8	6.9	7.0	7.0	85.7	86.3	86.0	3.8	3.8	3.8		4.9	5.2	5.1	

Note: * Average

Date:	15-Mar-14
Tide:	Mid-Ebb
Weather:	Cloudy
Sea Conditions:	Calm
Zone A	

Location	Sampling	Water	Current	Current	Monitoring	Temp	perratu	ıre (°C)	Salinity (ppt)			DO (mg/l)			DC) Satura (%)	Turbidity (NTU)				Suspended Solids (mg/l)				
Location	Time	Depth (m)	direction	(ms ⁻¹)	Depth	1	1 2 Ave.*		1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	1	2	Ave.*	D.A.**	1	2	Ave.*	D.A.**
					Surface	17.1	17.2	17.2	29.6	29.5	29.6	7.1	7.1	7.1	87.6	87.9	87.8	3.3	3.3	3.3		4.4	4.4	4.4	
C1	0958-1013	36.4	W	0.3	Middle	17.3	17.2	17.3	29.6	29.7	29.7	7.0	7.0	7.0	86.4	86.6	86.5	3.5	3.6	3.5	3.5	4.5	4.6	4.6	4.6
					Bottom	17.4	17.3	17.4	29.8	29.7	29.8	6.8	6.9	6.8	84.8	85.0	84.9	3.6	3.6	3.6		4.6	4.8	4.7	
					Surface	17.1	17.0	17.1	29.6	29.7	29.7	7.0	7.0	7.0	86.8	87.0	86.9	3.3	3.4	3.4		4.3	4.2	4.3	
E8	1018-1032	15.2	W	0.2	Middle	17.2	17.1	17.2	29.7	29.8	29.8	6.8	6.8	6.8	84.1	84.3	84.2	3.5	3.5	3.5	3.5	4.7	4.6	4.7	4.5
					Bottom	17.4	17.4	17.4	29.8	29.8	29.8	6.7	6.7	6.7	82.9	83.1	83.0	3.6	3.6	3.6		4.6	4.8	4.7	
					Surface	17.0	17.1	17.1	29.6	29.6	29.6	7.0	7.0	7.0	86.3	86.1	86.2	3.1	3.2	3.2		4.0	4.3	4.2	
S1	1037-1052	9.2	W	0.3	Middle	17.3	17.2	17.3	29.7	29.6	29.7	6.9	6.9	6.9	85.2	85.4	85.3	3.3	3.3	3.3	3.2	4.3	4.4	4.4	4.3
					Bottom	17.3	17.4	17.4	29.7	29.8	29.8	6.8	6.8	6.8	84.2	84.3	84.3	3.3	3.3	3.3		4.4	4.6	4.5	
					Surface	17.1	17.1	17.1	29.6	29.7	29.7	6.9	6.9	6.9	85.8	85.6	85.7	3.2	3.2	3.2		4.3	4.2	4.3	
G1	1057-1112	11.8	W	0.3	Middle	17.1	17.2	17.2	29.7	29.6	29.7	6.8	6.8	6.8	84.4	84.6	84.5	3.3	3.3	3.3	3.4	4.6	4.4	4.5	4.5
					Bottom	17.3	17.2	17.3	29.7	29.8	29.8	6.7	6.8	6.7	83.5	83.6	83.6	3.6	3.6	3.6		4.7	4.8	4.8	
					Surface	17.0	17.1	17.1	29.6	29.7	29.7	7.0	7.0	7.0	85.9	86.1	86.0	3.4	3.4	3.4		4.3	4.5	4.4	
E7	1117-1132	12.2	W	0.3	Middle	17.2	17.1	17.2	29.7	29.8	29.8	6.8	6.9	6.8	84.6	84.9	84.8	3.5	3.6	3.6	3.6	4.6	4.8	4.7	4.6
					Bottom	17.2	17.3	17.3	29.9	29.8	29.9	6.8	6.8	6.8	83.8	84.1	84.0	3.7	3.7	3.7		4.5	4.8	4.7	
					Surface	17.1	17.0	17.1	29.6	29.6	29.6	7.0	7.0	7.0	86.5	86.7	86.6	3.2	3.1	3.1		4.0	4.2	4.1	
F1	1137-1152	12.6	W	0.3	Middle	17.1	17.2	17.2	29.8	29.7	29.8	6.9	6.9	6.9	85.0	85.2	85.1	3.2	3.2	3.2	3.3	4.4	4.3	4.4	4.3
					Bottom	17.3	17.2	17.3	29.8	29.9	29.9	6.8	6.8	6.8	84.5	84.6	84.6	3.5	3.4	3.4		4.5	4.5	4.5	
					Surface	17.1	17.1	17.1	29.6	29.7	29.7	7.1	7.1	7.1	87.8	88.0	87.9	2.9	2.9	2.9		4.0	4.2	4.1	
G3	1157-1212	16.2	W	0.2	Middle	17.1	17.2	17.2	29.8	29.8	29.8	7.0	7.1	7.0	87.0	87.3	87.2	3.2	3.2	3.2	3.2	4.3	4.4	4.4	4.4
					Bottom	17.4	17.3	17.4	29.8	29.9	29.9	6.8	6.9	6.8	84.8	85.1	85.0	3.4	3.4	3.4		4.6	4.6	4.6	
					Surface	17.1	17.2	17.2	29.6	29.7	29.7	6.9	6.9	6.9	84.7	84.9	84.8	3.1	3.2	3.1		4.0	4.1	4.1	
E9	1217-1232	13.4	W	0.3	Middle	17.3	17.2	17.3	29.7	29.6	29.7	6.8	6.8	6.8	84.2	83.9	84.1	3.3	3.2	3.3	3.3	4.2	4.4	4.3	4.3
					Bottom	17.3	17.4	17.4	29.7	29.8	29.8	6.7	6.7	6.7	82.2	82.4	82.3	3.4	3.4	3.4		4.5	4.6	4.6	
					Surface	17.1	17.1	17.1	29.6	29.7	29.7	6.9	7.0	7.0	85.8	86.0	85.9	3.3	3.3	3.3		4.1	4.2	4.2	
S2	1237-1252	12.2	W	0.2	Middle	17.2	17.3	17.3	29.8	29.7	29.8	7.1	7.1	7.1	87.7	88.0	87.9	3.3	3.4	3.3	3.4	4.4	4.5	4.5	4.4
					Bottom	17.4	17.3	17.4	29.8	29.9	29.9	6.8	6.8	6.8	84.8	84.5	84.7	3.5	3.5	3.5		4.6	4.7	4.7	
					Surface	17.1	17.0	17.1	29.6	29.6	29.6	7.2	7.2	7.2	88.4	88.6	88.5	3.2	3.2	3.2		4.0	4.2	4.1	
G2	1257-1311	13.8	W	0.3	Middle	17.2	17.1	17.2	29.7	29.8	29.8	7.0	7.0	7.0	86.8	87.0	86.9	3.3	3.3	3.3	3.3	4.2	4.3	4.3	4.4
					Bottom	17.2	17.3	17.3	29.9	29.8	29.9	6.8	6.8	6.8	84.1	83.9	84.0	3.6	3.6	3.6		4.6	4.8	4.7	
					Surface	17.0	17.1	17.1	29.6	29.5	29.6	7.0	7.0	7.0	86.7	87.0	86.9	3.1	3.1	3.1		4.0	4.2	4.1	
S3	1315-1328	11.6	W	0.2	Middle	17.3	17.2	17.3	29.6	29.7	29.7	6.9	6.9	6.9	85.0	85.2	85.1	3.2	3.2	3.2	3.2	4.4	4.6	4.5	4.3
					Bottom	17.3	17.4	17.4	29.7	29.8	29.8	6.7	6.8	6.7	83.5	83.8	83.7	3.3	3.4	3.3		4.4	4.2	4.3	

Note: * Average

ERM has over 140 offices Across the following countries worldwide

Argentina	New Zealand
Australia	Panama
Belgium	Peru
Brazil	Poland
Canada	Portugal
China	Puerto Rico
Colombia	Romania
France	Russia
Germany	Singapore
Hong Kong	South Africa
Hungary	Spain
India	Sweden
Indonesia	Taiwan
Ireland	Thailand
Italy	The Netherlands
Japan	United Arab Emirates
Kazakhstan	United Kingdom
Korea	United States
Malaysia	Vietnam
Mexico	

Environmental Resources Management

16/F DCH Commercial Centre 25 Westlands Road Quarry Bay, Hong Kong

T: 2271 3000 F: 2723 5660

www.erm.com